Brief information about the project

Name of the project	AP09057951 «Development of "green" methods for
1 5	determination of pesticides in environmental objects based on
	Vacuum-assisted headspace solid phase microextraction»
Relevance	The development of "green" methods for detecting
	organic pollutants in environmental samples is a large area of
	scientific research in analytical chemistry. The importance of
	such studies is demonstrated by the fact that standard methods
	for determining organic substances in complex matrices rely on
	complex and labor-intensive sample preparation methods that
	necessitate the use of large volumes of toxic organic solvents.
	The development of "green" analytical methods is especially
	important for pesticides in use today, which are subject to
	ongoing regulatory oversight and monitoring.
	Headspace solid-phase microextraction (HS-SPME) is a
	promising organic solvent-free sample preparation technique
	that combines extraction, concentration, and purification in one
	step. The main issues with quantitative pesticide determination
	using HS-SPME are low analysis accuracy due to the matrix
	effect and low extraction efficiency of analytes with high
	boiling points and low Henry constants.
	To improve the sensitivity and reproducibility of
	pesticide detection in environmental objects, the proposed
	project will use a method that combines vacuum SPME (Vac-
	SPME) and cold fiber SPME. To improve analyte
	determination accuracy and control the matrix effect, the
	multiple Vac-SPME method will be used.
	The outcomes of research on the kinetics and processes
	of cold fiber SPME and Vac-SPME for different pesticide
	classes can serve as the foundation for the creation of accurate
	and affordable "green" techniques for the detection of
	additional analytes in different matrices.
	The cost, time, and labor costs of analysis will be
	decreased when the developed procedures are introduced into
	laboratories that determine the presence of pesticide residues in
	various items within the parameters of state regulations.
Purpose	Develop new accurate and cost-effective green methods
	for quantification of pesticide residues in environmental
	objects based on vacuum-assisted headspace solid-phase
	microextraction (Vac-HSSPME) and cold-fiber solid-phase
	microextraction (CF-SPME).
Objectives	Task 1. Development of a methodology for the
	determination of organic pesticides in water based on Vac-
	SPME
	Task 2. Development of a methodology for the
	determination of organic pesticides in soil based on Vac-SPME
	and CF-SPME
	Task 3. Development of a methodology for the
	determination of organic pesticides in grain samples based on
	Vac-SPME

	Task 4. Preparation for the certification of the analysis
	methodology, testing of the developed methods on real samples
	of water, soil and grain crops
Expected and achieved	The project developed four new techniques for the
results	quantification of nitrogen-containing organic pesticide residues
	in water, soil and grain crop samples. The developed methods
	are based on the use of a "green" sample preparation method -
	solid-phase microextraction (SPME), which allows the
	extraction of target pesticides from various objects without the
	use of organic solvents and lengthy and expensive procedures
	for preliminary extraction and purification of extracts before
	analysis. To improve the efficiency of pesticide extraction,
	modifications were used for the first time - vacuum SPME and
	SPME with cooling of the sorbent during extraction. Lowering
	the pressure in the system made it possible to increase the
	efficiency of extraction of target pesticides from water by $4-17$
	times, from soil by 3–7 times, and from wheat samples by 1.2–
	6 times.
	The developed method for determining pesticides in
	water makes it possible to determine analytes in the
	concentration range of $0.5 - 25 \mu g/l$ with an accuracy of 107-
	117% and detection limits from 0.002 to 0.05 μ g/l. The
	developed method for determining pesticides in soil provides
	quantitative determination of analytes in the concentration
	range of 25–200 ng/g with an accuracy of 69–109% and
	detection limits in the range from 0.1 to 4 ng/g . The developed
	method for wheat samples provides quantitative determination
	of analytes in the concentration range from 5 to 500 ng/g with
	an accuracy in the range of 70-131% and detection limits in the
	range of $0.1 - 3$ ng/g.
	The developed methods provide a low-cost and green
	alternative to standard methods for the analysis of pesticides
	from complex matrices. Compared to other analytical
	techniques that use large volumes of organic solvents and
	disposable (disposable) cartridges and sorption tubes, the
	developed methods offer more than 3 times lower material
	costs and complete elimination of the use of organic solvents
	during sample preparation.
Research team members with	Project leader, Ph.D. Dina Orazbayeva, since 2015 has
their identifiers (Scopus	been developing "green" methods for the determination of
Author ID, Researcher ID,	organic compounds in environmental objects. D. Orazbayeva
ORCID, if available) and	has developed five new techniques for the determination of
links to relevant profiles	organic compounds in environmental objects based on solid-
<u>r</u>	phase microextraction. Hirsch Index 5, Author ID in Scopus:
	57189031525; Researcher ID Web of Science: O-5505-2017;
	ORCID ID: 0000-0002-3535-4576.
	Aray Zhakupbekova is working on her Ph.D. thesis on
	the development of new techniques for the determination of
	organic pollutants in soils based on vacuum solid-phase
	microextraction. She has seven publications in international
	journals with impact factor: Chemosphere, Trends in
	Environmental Analytical Chemistry and Journal of Dairy
L	

	Science. Hirsch Index 5, Author ID in Scopus: 55347201400; Researcher ID Web of Science: P-5639-2017; ORCID ID: 0000-0002-1145-3457. Kapar Anel, a Ph.Dcandidate, performs a thesis on the
	development of numerical models of SPME. Hirsch Index 2, Author ID in Scopus: 57191839630; ORCID ID: 0000-0001-9828-5654.
	Bektassov Marat, Ph.Ddoctoral student of the 3 rd year, is engaged in the development of equipment, materials and methods for "green" environmental monitoring. Hirsch Index 3, Author ID in Scopus: 57188593383; Researcher ID Web of Science: P-5639-2017.
	Alua Zhumadildinova Ph.Ddoctoral student of the 2 nd year is working on her Ph.D. thesis on the development of methods for the determination of organic pollutants in environmental objects based on vacuum SPME. ORCID ID:
	0000-0003-2520-7385. Dyussenkulova Balgyn is a 3 rd year undergraduate student. ORCID ID: 0009-0004-0322-3696.
List of publications with links to them	1.Orazbayeva D., Muratuly A., Bektassov M.,Zhakupbekova A., Kenessov B., Chromatographicdetermination of pesticides in soil: Current trends in analysisand sample preparation // Trends Environ. Anal. Chem. – 2022.–Vol. 35. – P. e00174.https://doi.org/10.1016/j.teac.2022.e00174(IF=11.2, Q1 in"Chemistry, Analytical")2.Zhakupbekova A., Baimatova N., Psillakis E.,Kenessov B., Quantification of trace transformation products
	of rocket fuel unsymmetrical dimethylhydrazine in sand using vacuum-assisted headspace solid-phase microextraction // Environ. Sci. Pollut. Res. – 2022. – Vol. 35. – P. e00174. <u>https://doi.org/10.1007/s11356-021-17844-1</u> . (IF=5.8, Q1 in "Pollution")
	<u>3.</u> <u>Dyussenkulova B., Zhakupbekova A.,</u> <u>Zhumadildinova A., Yusupova K., Kapar A., Orazbayeva D.</u> Determination of nitrogen-containing pesticides in soil using vacuum-assisted headspace solid-phase microextraction // Chemical Bulletin of Kazakh National University. – 2023. – 110. – Is.4. –P. 12-22. – <u>https://doi.org/10.15328/cb1340</u> . (journal indexed in Web of Science Core Collection).
Patents	

